MODELLING OF NON-CATALYTIC REACTIONS IN A GAS-SOLID TRICKLE FLOW REACTOR: DRY, REGENERATIVE FLUE GAS DESULPHURiSATION USING A SILICA-SUPPORTED COPPER OXIDE SORBENT

نویسنده

  • J. H. A. KIEL
چکیده

Ahstrati-A one-dimensional, two-phase axially dispersed plug flow model has been developed to describe the steady-state performance of a relatively new type of reactor, the gas-solid trickle flow reactor (GSTFR). In this reactor, an upward-flowing gas phase is contacted with a downward-flowing dilute solids phase over an inert packing. The model is derived from the separate mass and heat balances for both the gas and (porous) solids phases for the case of a non-catalytic gas-solid reaction, which is first-order in the gaseous reactant. The reaction rate may also depend on the solid reactant concentration, but this concentration is assumed to be low and uniform throughout the solids volume. From the model, axial profiles can be calculated numerically for the four independent variables, viz. the gas-phase and solids-phase temperatures and the concentrations of the gaseous and solid reactant. Under isothermal conditions, the model equations can be solved analytically; the resultina exmessions for the axial urofilas of the ~~aseous and solid reactant are presented. The mod&i is applied t; p&ict the flue gas desulphurisation I;krformance of a full-scale GSTF absorber in a dry, regenerative process for the simultaneous removal of SO, and NO, from flue gases. In this process, to-be operated at 450-400-C, the sorbent material consists of a-porous silica support (spherical particles, 1.5 mm diameter) with 7.5 wt% CuO deposited on this support by an ion-exchange technique. The model calculations are based on experimental findings from previous studies regarding reaction kinetics, hydrodynamics of the two-phase flow, gas-solids mass transfer and testing of the integrated process in a bench-scale plant. It appears that SO2 removal efficiencies over 95% can be achieved in a GSTF absorber with a length of 15 m. Furthermore, the model predicts a large temperature peak for both phases in the absorber if the heat capacity ratio (defined as the ratio of mass flux times specific heat capacity for both phases) is close to one. This large temperature peak is due to the occurrence of the exothermic reaction of SO2 with CuO in combination with efficient countercurrent gas-solids heat exchange. Several parameters influencing the magnitude and axial position of the maximum gas-phase and solids-phase temperatures are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photocatalytic Oxidation of SO2 from Flue Gas in the Presence of Mn/Copper Slag as a Novel Nanocatalyst: Optimizations by Box-Behnken Design

One of the principal air pollutants is sulfur dioxide (SO2). The removal of SO2 from flue gas has been one of the key challenges in the control of SO2 emission. In this work, experimental scale photocatalytic oxidation of SO2 is a major process leading to H2SO4 as a new method was suggested on the Liquid ph...

متن کامل

Improved numerical simulation of the low temperature Fischer-Tropsch synthesis in a trickle bed reactor

Abstract Gas to liquid (GTL) process involves heterogeneous catalytic chemical reactions that convert synthesis gas to hydrocarbons and water vapor. A three phase reactor, called Low temperature Fischer-Tropsch (LTFT) is commonly applied for GTL process. In this reactor the gaseous phase includes the synthesis gas, light hydrocarbons and water vapor, the liquid phase is a mixture of the h...

متن کامل

Development of New Potassium Carbonate Sorbent for CO2 Capture under Real Flue Gas Conditions

In this paper, the development of a new potassium carbonateon alumina support sorbent prepared by impregnating K2CO3 with an industrial grade of Al2O3 support was investigated. The CO2 capture capacity was measured using real flue gas with 8% CO2 and 12% H2O in a fixed-bed reactor at a temperature of 65 °C using breakthrough curves. The developed sorbent showed an adsorption capacity of 66.2 mg...

متن کامل

Modelling of in-duct desulfurization reactors

The modelling of the in-duct desulfurization process at low temperatures was performed from data obtained in an entrained flow reactor at laboratory scale. Two modelling approaches were used for the process description under in-duct conditions in the reactor: (i) the application of the grain model to a single particle along the reactor, and (ii) a non-ideal adsorption equation for the gas–solid...

متن کامل

Characterization of Sol-Gel Derived CuO@SiO2 Nano Catalysts towards Gas Phase Reactions

One distinct concentration of copper ions was embedded into the silica matrix to xerogel form using copper source Cu(NO3)2∙3H2O. The xerogel samples were prepared with using hydrolysis and condensation reactions of TetraEthyl Ortho-Silicate (TEOS) by the sol-gel method. In this investigation, new molar ratio of H2</su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001